ENERGY AND ENZYMES

LIGHT

HEAT

CHEMICAL

FIRE

KINETIC

ELECTRICAL

ENZYMES
Energy

- Energy is often defined as the ability to do work.
- Pair up and list as many forms of energy as you can.
 - Electrical.
 - Chemical.
 - Nuclear.
 - Magnetic.
 - Elastic.
 - Sound.
 - Gravitational energy.
 - Kinetic energy (energy of motion).
 - Thermal energy (heat energy).
 - Potential energy.
Potential Energy

- Potential energy is the energy something has based on its position in the universe.
- A stretched elastic band has potential energy.
- A rock held up in the air has potential energy based on its position.
Chemical energy is a type of potential energy. It is the form of energy that powers all of the chemical reactions life processes that take place inside the cells of all living organisms. The chemical energy contained in any given molecule is found within the bonds that hold the atoms together.
Chemical Energy and Food

- This chemical energy is found in the foods we eat, and it provides our cells with the energy they need to survive.
- The energy is actually found within a few types of high energy bonds that make up the carbs, lipids, and proteins we eat.
- The chemical energy stored in the bonds between the carbon, hydrogen and oxygen atoms of these foods we eat, provide us the energy we need to carry out all of life’s processes.
Chemical Energy and Food

Basic overview of Energy and human life

Chemical energy
- Carbohydrates
- Fats
- Others

ATP
- body's "energy currency"

Chemical waste
- Carbon dioxide
- Water

Heat

metabolism

Heat
Endothermic vs Exothermic

- **Endothermic** (Endergonic) reactions require **energy** (low energy reactants converted to high energy products).
- Two examples include; cooking an egg and the electrolysis of water.
- \[\text{H}_2\text{O} \rightarrow \text{H}_2 + \text{O}_2 \]
- If the energy required to break the bonds in the reactants is greater than the energy given off by the formation of the bonds in the products then the reaction is **endothermic**.
Photosynthesis

- The major biochemical endothermic reaction that occurs within plants.
- Photosynthesis involves the breakdown of water molecules with their hydrogen atoms being transferred to carbon atoms to make organic molecules like glucose.
- \[6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow C_6\text{H}_{12}\text{O}_6 + 6\text{O}_2\]
Endothermic vs Exothermic

- **Exothermic** (Exergonic) reactions **release energy** (high energy reactants converted to low energy products).
- Examples include burning anything (wood, paper, a candle, gasoline, hydrogen gas).
- \[\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O} \]
- If the energy given off by the formation of the bonds in the products is greater than the energy required to break the bonds in the reactants then the reaction is **exothermic**.
The major biochemical exothermic reaction that occurs within our bodies.

Energy rich molecules like glucose are broken down inside the mitochondria releasing their energy. The process is called cellular respiration.

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6 \text{H}_2\text{O} \]
Cellular Respiration

- The same equation describes the burning of glucose, and the same amount of free energy is released.
- If your task was to explode a stick of dynamite in this room right now without killing us all...how would you do it? Pair up and discuss a plan.
- The achievement of mitochondria is their ability to release the energy of glucose in small, discrete steps so that some of the energy can be trapped in ATP (adenosine triphosphate).
Units of Energy Measurement

- The unit of measure for energy is a calorie (cal).
- It is defined as the amount of energy required to warm 1 gram of water 1 degree Celsius. Therefore 1 kilocalorie (kcal) is the amount of heat needed to warm 1000 grams or 1 liter of water 1 degree Celsius.
- However, when dealing with calories found in food, things get a little confusing.
- On product labels, calories is written with a capital "C" and actually represents one thousand calories or 1 kcal.
Units of Energy Measurement

- Therefore if 1 cup of cereal is said to contain 150 Calories it actually contains 150,000 calories or 150 kcal, but because society and the food industry uses Calories (with the capital C) it is reported as 150 Cal.
Catalysts are chemicals that control the rate or speed of chemical reactions.

The catalysts themselves are not changed in the process, they are simply used to help chemical reactions occur.
Enzymes are special protein catalysts that control the rates of reactions that occur in living cells.

Usually this means allowing the reactions to occur at lower “safer” temperatures for the cell.

There are thousands of different enzyme in the human body, each designed to catalyze a particular reaction.
We have already discussed the roles of several enzymes in earlier units.

- Enzymes Involved in DNA Replication
 - 1) DNA Polymerase
 - 2) DNA Ligase
- Enzymes Involved in Protein Synthesis
 - 1) RNA Polymerase
- Enzymes Involved in Recombinant DNA
 - 1) Restriction Enzymes
 - 2) DNA Ligase
- Enzymes Involved in DNA Typing
 - 1) Restriction Enzymes
Enzymes can be thought of as either "molecular scissors", that cut larger molecules in half, like a restriction enzyme cuts up DNA, or a set of "molecular hands" that hold smaller molecules together at proper angles until they are glued or bonded to form a larger molecule.
The **activation energy** is the energy required to initiate a chemical reaction.

Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze.

In doing so, they lower the amount of **activation energy** needed and thus speed up the reaction.
How do Enzymes Operate?

- First an enzyme binds to the reactant(s), called the substrate.
- The **active site** of the enzyme is the area of the protein that combines with the substrate.
- Successful binding of enzyme and substrate requires that the two molecules be able to approach each other closely over a fairly broad surface.
- Thus the analogy that a substrate molecule binds its enzyme like a key in a lock.
This requirement for complementarity in the configuration of substrate and enzyme explains the remarkable **specificity** of most enzymes.

Generally, a given enzyme is able to catalyze only a single chemical reaction or, at most, a few reactions involving substrates sharing the same general structure.

Which substrate fits the yellow enzyme?
1. Some enzymes are involved in reactions where larger molecules are broken apart.
2. These are often referred to as catabolic reactions.
3. Digestive enzymes like amylase provide an example.
Other enzymes are involved in reactions where two smaller molecules are linked together. These are often referred to as anabolic reactions.

DNA Polymerase is an example.

In this case, the enzyme holds the nucleotides together at the precise angle needed for a bond to form between them.

http://www.youtube.com/watch?v=CZD5xsOKres
Factors Affecting Enzyme Action

- 5 general factors affect the rate of enzyme activity.
- 1) Temperature
- 2) pH
- 3) Concentration of substrate molecules
- 4) Inhibitors (competitive and non-competitive)
- 5) Feedback loops
1) Temperature

- Who is this?
- Why is Goldilocks like an enzyme?
- Enzymes are like Goldilocks...they prefer it not too hot...not to cold....but just right.
- The activity of enzymes is strongly affected by temperature.
1) Temperature

- If the temperature is above or below the optimal range for a given enzyme, the enzyme activity decreases sharply.
- What is the optimal temperature for the blue enzyme? And the pink one?
2) pH

- The activity of enzymes is also affected by pH.
- If the pH is above or below the optimal range for a given enzyme, the enzyme activity decreases sharply.
- What is the optimal pH for Pepsin?
- Where in the body do you think pepsin is active?
- What is the optimal pH for Amylase?
3) Concentration of Substrate

- Enzyme activity can also be affected by the **concentration of the substrate molecules**. Generally the greater the concentration of the substrate molecules, the greater the number of collisions, the greater the rate of reaction.

- However, once the concentration of the substrate molecules exceeds the concentration of the enzyme molecules, the rate levels off due to a lack of enzyme binding sites.
Pair up and B.S. why the rate of the reaction levels off in the High [S] section (which stands for high concentration of substrate)?
4) Inhibitors

- The necessity for a close, if brief, fit between enzyme and substrate explains the phenomenon of inhibition.
- There are two types of inhibitors.
 a) Competitive
 b) Non-competitive
4) Inhibitors

- a) Competitive inhibitors have shapes very similar to that of the substrate. They “compete” with the substrate for the activation sites of enzymes and thus “get in the way” of the reaction.

- b) Non-competitive inhibitors have the ability to bind to the “back end” of the enzyme (called the allosteric site) which changes the shape of the active site of the enzyme so it cannot bind to the substrate.

http://www.youtube.com/watch?v=PILzvT3spCQ
There are 2 types of feedback loops.

a) Feedback Inhibition

b) Precursor Activation

Metabolic pathways are a series of chemical reactions of which work sort of like an assembly line to produce a certain end product.
a) Feedback Inhibition

- If the product of a metabolic pathway begins to accumulate within the cell, it is wasteful for the cell to continue to make that product.
- In fact it might even be toxic for the cell to produce any more of that final end product as the levels of that end product might be out of the tolerable range.
- Feedback inhibition uses enzymes, and their amazing ability to change shape, to slow down or stop a metabolic pathway.
It does this by binding to the enzyme’s allosteric site, which in turn alters the enzyme’s activation site, and actually **degrades** the “fit” of the enzyme-substrate complex.

Thus further production of the enzyme is halted.
If the initial substrate of a metabolic pathway begins to accumulate within the cell, it is usually in the cell's best interest to use up the substrate and not continue to leave it "laying around".

In fact it might even be toxic for the cell to have this excess material present as the levels of that material might be out of the tolerable range.

Precursor activation uses enzymes, and their amazing ability to change shape, to speed up a metabolic pathway.
b) Precursor Activation

- It does this by binding to the enzyme’s allosteric site, which in turn alters the enzyme’s activation site, and actually improves the “fit” of the enzyme-substrate complex.

- Thus speeding production of the enzyme is halted. (see left diagram)
In the case of feedback inhibition and precursor activation, the activity of the enzyme is being regulated by a molecule which is not its substrate.

In these cases, the regulator molecule binds to the enzyme at a different site than the one to which the substrate binds.

When the regulator binds to its site, it alters the shape of the enzyme so that its activity is changed. This is called an *allosteric* effect.
Reviewing Feedback Loops

- a) Feedback Inhibition – slow the pathway down. “Apply the brakes”
- b) Precursor Activation – speed the pathway up. “Step on the gas”
Which diagram (the left or the right) depicts Feedback Inhibition?

Which diagram (the left or the right) depicts Precursor Activation?
Energy Storage and Transformation

- ATP (Adenosine Triphosphate) is a nucleotide that performs many essential roles in the cell.
- Besides pairing with thymine in DNA (A pairs with T), adenosine can be modified to play the crucial role of energy provider for cells. ATP is the major energy currency of the cell, providing the energy for most of the energy-consuming activities of the cell.
- The ATP molecule is like a “molecular rechargeable battery” that can be charged and discharged over and over again.
Examples of where ATP is used (discharged)

- Most anabolic reactions in the cell are powered by ATP.
 - a) assembly of amino acids into proteins
 - b) assembly of nucleotides into DNA and RNA
 - c) synthesis of polysaccharides such as glycogen and starch
 - d) synthesis of triglycerides
- Other cell processes that are powered by ATP include:
 - a) Active transport
 - b) Nerve impulses
 - c) Maintenance of cell volume by removing excess water
 - d) Muscle contractions
 - e) Beating of cilia and flagella
Examples of where ATP is produced (charged)

- In the cytoplasm during glycolysis
- In mitochondria during cellular respiration
- In chloroplasts during photosynthesis
How does ATP store energy?

- The energy is stored in the bonds that hold the third phosphate group onto the ATP molecule.
How is the energy released from ATP?

- ATP is the high energy form of the molecule.
- When the third phosphate group of ATP is removed, energy is released.
- The exact amount depends on the conditions, but on average 7.3 kcal per mole is released.
- With the third phosphate removed, we no longer call the molecule ATP, it is now called ADP or adenosine diphosphate.
How is the energy released from ATP?

- The chemical equation that represents this release of energy is as follows.
- \[\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{P} \text{ (energy)} \]
How is the molecule “charged back up”?

- ADP is the low energy form of the molecule.
- It can be charged back up into ATP by having the third phosphate added back into position.
- To do this, the same amount of energy must be consumed. Again, the exact amount depends on the conditions, but on average 7.3 kcal per mole is required.
- With the third phosphate back in position, we no longer call the molecule ADP, it is now called ATP or adenosine triphosphate.
- This process of adding a phosphate group to a molecule is called phosphorylation.
How is the molecule “charged back up”?

- The chemical equation that represents this release of energy is as follows.
- \[\text{ADP} + \text{P} + \text{(energy)} \rightarrow \text{ATP} + \text{H}_2\text{O} \]
The ATP Cycle

The energy to make ATP comes from catabolic reactions that are exergonic.

Energy input

ADP + P_i

Energy release

ATP hydrolysis provides the energy for cellular processes that are endergonic.
The ATP Cycle

Animal cell

Cytosol

Mitochondrion

Plant cell

Organic molecules

O₂

CO₂ & H₂O

ATP

ATP
Endothermic & Exothermic Reactions and the ATP Cycle
Photosynthesis

- Sunlight plays a much larger role in our sustenance than we may expect.
- All the food we eat and all the fossil fuel we use is a product of photosynthesis, which is the process that converts energy in sunlight to chemical forms of energy that can be used by biological systems.
Photosynthesis

- The word equation is as follows:
 - carbon dioxide + water \rightarrow glucose + oxygen
- The balanced chemical equation is as follows:
 - $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$
Leaves and Leaf Structure

- Plants are the only photosynthetic organisms to have leaves (although not all plants have leaves).
- A leaf may be viewed as a solar collector crammed full of photosynthetic cells.
- There are two important types of conductive tissue in plant cells.
 - **Xylem** – carry water from the roots to the leaves.
 - **Phloem** – carry glucose from the leaves to the rest of the plant.
Xylem and Phloem

- Solar energy
- Leaf
- Carbon dioxide absorption
- Release of oxygen
- Stem
- Glucose
- Absorption of water and mineral salts
The raw materials of photosynthesis, water and carbon dioxide, enter the cells of the leaf, and the products of photosynthesis, sugar and oxygen, leave the leaf.
The stomata is the opening in the leaf in which the carbon dioxide enters the leaf and the oxygen exits.

The stomata opening is controlled by two bean shaped guard cells.
- Light travels in waves. Different wavelengths of light are perceived by us as different colors.
- White light is separated into the different colors of light by passing it through a prism or water drops in a rain cloud.
Perceived Color

- Why is a shirt red?
- Why is a shirt blue?
- We perceive objects to be the color they are because of the light they reflect.
- Why is a shirt black?
- Why is a shirt white?
Chlorophyll

- A pigment is any substance that absorbs light.
- The color of the pigment comes from the wavelengths of light reflected (in other words, those not absorbed).
- Chlorophyll is the green pigment common to all photosynthetic cells. It absorbs all wavelengths of visible light except green, which it reflects to be detected by our eyes.
Spectrometer

- A spectrometer is used to measure which wavelengths of light are absorbed by a given pigment.
- As we would expect, chlorophyll absorbs most colors of light except green...which it reflects.
- The organelles responsible for photosynthesis are the chloroplasts. Inside the chloroplasts are **thylakoids**, the structural units of photosynthesis.
- Thylakoids are stacked like pancakes into stacks known as **grana**.
- The space surrounding the grana is referred to as the **stroma**.
Step 1 of 2: Light Reaction

PHOTOSYSTEM I

PHOTOSYSTEM II

RESTORING PHOTOSYSTEM II

INSIDE OF THYLAKOID

O₂ released

e⁻ e⁻

H₂O → H⁺ H⁺ O₂⁻

Step 2 of 2: Carbon Fixation In Stroma

RuBisCo

three molecules of CO₂ fixed give a net yield of one molecule of glyceraldehyde 3-phosphate at a net cost of nine molecules of ATP and six molecules of NADPH

1 G3P = 1/2 Sugar

SUGARS, FATTY ACIDS, AMINO ACIDS
Photosynthesis - The Steps

- Photosynthesises is a two-step process.
- Step 1
 - The Light Reaction – takes place inside the thylakoids.
- Step 2
 - The Carbon Fixation Cycle – takes place in the stroma.
Step 1 The Light Reaction

- This takes place inside the thylakoid.
- In the Light Dependent Processes, light strikes chlorophyll in such a way as to excite electrons to a higher energy state.
- In a series of reactions (along the ETS), the energy is converted into ATP and NADPH.
- Water is split in the process, releasing oxygen as a by-product of the reaction.
- The ATP and NADPH provide the energy and some of the matter for the Carbon Fixation Cycle.
Thylakoids Inside a Chloroplast

- Outer Membrane
- Thylakoid
- Lumen
- Inner Membrane
- Stroma
- Granum
The Thylakoid and the Light Reaction

Electron transport chains convert light energy to chemical energy.

PHOTOSYSTEM I

PHOTOSYSTEM II

RESTORING PHOTOSYSTEM II

THE STROMA

ATP SYNTHASE

ATP-producing carrier protein

Hydrogen ions, H^+

O_2

2 H_2O

4 H^+

H^+

H^+

NADP^+ + H^+

NADPH

Light

Pigments

Water-splitting enzyme

Inside of thylakoid

Inside of thylakoid

ADP + P

ATP
Energy from light is absorbed by a chlorophyll complex at PSII and an electron is pumped down one site along the ETS.

To replace the missing electron, PSII steals an electron from water (water is the electron loser) splitting the water into H^+ ions and O.

The oxygen pair up forming O_2 and are given off as waste.

The H^+ ions (called protons) are left to build up inside the thylakoid and help increase the proton gradient across the thylakoid membrane.

The electron from the water is passed along the ETS like a hot potato from one electron acceptor to the other.
- Along its travels down the ETS the "excited" electron is used to pump H⁺ across the membrane into the thylakoid also helping increase the proton gradient.
- When the electron reaches PSI it is re-energized by another unit (photon) of light.
- This time the excited electron is used to reduce NADP⁺ turning it into NADPH (here one might say the electron hops into the electron taxi cab called NADPH).
- The proton gradient gives ATPase the energy to convert ADP into ATP (this is called photophosphorolalation - in other words converting ADP into ATP).
- The end result is NADPH and ATP are produced.
Step 2 Carbon Fixation Cycle

- In the carbon fixation cycle carbon dioxide from the atmosphere (or water for aquatic organisms) is captured and modified by the addition of hydrogen to form carbohydrates such as glucose.
- The incorporation of carbon dioxide into organic compounds is known as carbon fixation.
- The energy for the carbon fixation cycle comes from the light reaction on the form of ATP and NADPH.
The Stroma Inside a Chloroplast

- Outer Membrane
- Thylakoid
- Lumen
- Inner Membrane
- Stroma
- Granum
The Carbon Fixation Cycle

Three molecules of CO₂ fixed give a net yield of one molecule of glyceraldehyde 3-phosphate at a net cost of nine molecules of ATP and six molecules of NADPH.
The image represents the Calvin-Benson Cycle, which is a series of biochemical reactions that occur in the chloroplasts of plants. The cycle involves the fixation of carbon dioxide into organic compounds, which can then be used to synthesize glucose and other sugars. The cycle begins with the fixation of CO₂ into ribulose diphosphate (RuBP), followed by a series of reactions that convert RuBP into glyceraldehyde 3-phosphate (G3P). G3P is then used to regenerate RuBP, completing the cycle. The cycle requires the input of ATP and NADPH, which are produced by the light-dependent reactions of photosynthesis. The output of the cycle is glucose and other sugars.
Step 2 Carbon Fixation Cycle

- The 2 products of the light reaction (ATP and NADPH) are now used to drive the carbon fixation cycle.
- The ATP releases its energy and the NADPH drops off the electrons and protons (H\(^+\)) it picked up from water in the light reaction.
- The carbon fixation cycle starts as 3 CO\(_2\) molecules enter the stroma and are grabbed by the enzyme RuBisCo and each is added to a 5 carbon chain.
Step 2 Carbon Fixation Cycle

- Through a series of reactions and shuffling of atoms, 6 molecules of glyceraldehyde 3-phosphate (G_3P) are produced.
- One G_3P is removed and the other 5 G_3P are reshuffled and used to regenerate the cycle.
- The end result is G_3P which is a 3 carbon chain that can be thought of as a half a sugar.
- Two turns of the cycle are therefore required to produce 1 sugar molecule.
Step 1 of 2 Light Reaction

- **Photosystem I**
 - Light
 - Path of electrons
 - NADP⁺ + H⁺ → NADPH

- **Photosystem II**
 - Light
 - Water-splitting enzyme
 - H⁺ and e⁻ "taxi"

- **Restoring Photosystem II**

- **The Stroma**
 - ATP-producing carrier protein
 - ATP Synthase

- **H₂O → H⁺ H⁺ O₂⁻**

- **O₂ released**

Step 2 of 2 Carbon Fixation In Stroma

- **RuBisCo**
 - Three molecules of CO₂ fixed give a net yield of one molecule of glyceraldehyde 3-phosphate at a net cost of nine molecules of ATP and six molecules of NADPH

- **1 G3P = 1/2 Sugar**

SUGARS, FATTY ACIDS, AMINO ACIDS
Summary of Photosynthesis

LIGHT REACTIONS

- **H₂O**
- **CO₂**
- **Light**
- **Chloroplast**
- **O₂**

Photosystem II
- Electron transport chain
- Photosystem I

NADPH

ATP

RuBP

3-Phosphoglycerate

G3P

Sucrose (export)

Starch (storage)

Amino acids

Fatty acids
Cellular Respiration

- Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water.
- The energy released is trapped in the form of ATP for use by all the energy consuming activities of the cell.
- The word equation is as follows:

 Glucose + oxygen \rightarrow carbon dioxide + water

- The balanced chemical equation is as follows:

 $\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$
STAGE 1: BREAKDOWN OF LARGE MACROMOLECULES TO SIMPLE SUBUNITS

STAGE 2: BREAKDOWN OF SIMPLE SUBUNITS TO ACETYL CoA ACCOMPANIED BY PRODUCTION OF LIMITED AMOUNTS OF ATP AND NADH

STAGE 3: COMPLETE OXIDATION OF ACETYL CoA TO H₂O AND CO₂ ACCOMPANIED BY PRODUCTION OF LARGE AMOUNTS OF ATP IN MITOCHONDRIUM

PROTEINS: AMINO ACIDS
POLYSACCHARIDES: SIMPLE SUGARS
FATS: FATTY ACIDS AND GLYCEROL

GLUCOSE → CYTOSOL → PYRUVATE → ACETYL COA → CITRIC ACID CYCLE
REDUCING POWER AS NADH

MITOCHONDRIAL MEMBRANES

ATP
O₂
NH₃
H₂O
CO₂
WASTE PRODUCTS

PLASMA MEMBRANE OF EUCARDYOTIC CELL
Cellular Respiration

- The process occurs in three stages:
 - **Glycolysis** – splitting of glucose in half into two $\frac{1}{2}$ sugars called pyruvate.
 - **The Transition Step** – technically known as the “**Formation of Acetyl Coenzyme A**” is a mini-step that occurs between steps 1 and 2. Here pyruvate is converted into Acetyl CoA.
 - **Citric Acid Cycle (Kreb's Cycle)** – the further breakdown Acetyl CoA into CO$_2$.
 - **Electron Transport System** – majority of the ATP production - high energy NADH and FADH$_2$ are "cashed in" to ATP.
Cellular Respiration Overview

Glycolysis
Glucose → 2 Pyruvic acid

Cytoplasm

2 ATP

2 NADH

2 Acetyl CoA

Krebs cycle

6 NADH + 2 FADH₂

Electron transport chain/ATP synthase action

ATP

Maximum ATP per glucose molecule: About 38

ATP
The Stages of Cellular Respiration

Glycolysis

Formation of acetyl coenzyme A

Citric acid cycle

Electron transport and chemiosmosis

Glucose

Pyruvate

Mitochondrion

Acetyl coenzyme A

Citric acid cycle

Electron transport and chemiosmosis

2 ATP

ATP

ATP

$C_6H_{12}O_6 + 6 \text{ O}_2 + 6\text{H}_2\text{O} \rightarrow 6\text{ CO}_2 + 12\text{ H}_2\text{O} + \text{Energy (in the chemical bonds of ATP)}$
Step 1 Glycolysis
Step 1 Glycolysis

- Glycolysis occurs in the cytoplasm.
- **Glycolysis** is the metabolic process in which a 6-carbon glucose is split into two 3-carbon pyruvate molecules.
- A net of 2 ATP and 2 NADH are produced for every glucose broken down.
- Glycolysis is not technically a part of cellular respiration but we will refer to it as step 1 of 3.
When oxygen is present (aerobic conditions), most organisms will continue on to transition and steps 2 and 3.

1. **Glycolysis** – splitting of glucose in half into two $\frac{1}{2}$ sugars called pyruvate.

The **Transition Step** – technically known as the “Formation of Acetyl Coenzyme A” is a mini-step that occurs between steps 1 and 2. Here pyruvate is converted into Acetyl CoA.

2. **Citric Acid Cycle (Kreb's Cycle)** – the further breakdown Acetyl CoA into CO$_2$.

3. **Electron Transport System** – majority of the ATP production - high energy NADH and FADH$_2$ are "cashed in" to ATP.
The Mitochondrion

- The mitochondrial is the power house of the cell.
- Steps 2 and 3 of aerobic cellular respiration occur in the mitochondrial.
- There are 2 membranes inside the mitochondrial.
- Between the inner and outer membrane is the intermembrane space.
- The interior of the mitochondrial is called the matrix.
The Transition Step

- Technically known as the “Formation of Acetyl Coenzyme A”.
- Just as the pyruvate (a 3-carbon chain) enters the mitochondria, each pyruvate is shortened by 1 carbon forming two 2-carbon chains.
The Transition Step

- The carbons that are removed each form a carbon dioxide and are released.
- The remaining two 2-carbon chains called Acetyl CoA are ready to enter the mitochondrion for step 2. Two more NADH are produced in the process.
Step 2
Citric Acid Cycle
Step 2 Citric Acid Cycle

- One at a time, each of the two Acetyl Co-A (2-C chains) is attached to a 4-C chain (oxaloacetic acid).
- The 2-C and 4-C make form a 6-carbon chain called Citric acid (why it’s AKA as the Citric Acid Cycle).
- During the rest of the cycle, the atoms are shuffled around, and the carbons that entered the cycle are released as carbon dioxide.
Glycolysis

Formation of acetyl coenzyme A

Citric acid cycle

Electron transport and chemiosmosis

Glucose → Pyruvate → Acetyl coenzyme A → Citric acid cycle → Electron transport and chemiosmosis

\[C_6H_{12}O_6 + 6 \text{O}_2 + 6\text{H}_2\text{O} \rightarrow 6\text{CO}_2 + 12\text{H}_2\text{O} + \text{Energy (in the chemical bonds of ATP)} \]
Step 3 Electron Transport System

Mitochondrial Electron Transport Chain

- ATP Synthase
- Intermembrane space
- High H^+ concentration
- Matrix
- Low H^+ concentration
- Mitochondrion
- ADP + P_i → ATP
- NADH
- FAD
- FADH$_2$
- Cytochrome c
- ATP
- Water (H_2O)
- $2H^+$
- $2H^+$
- $2e^-$
Step 3 Electron Transport System

- Whereas Citric Acid Cycle occurs in the matrix of the mitochondrion, the Electron Transport System (ETS) is embedded in the membranes known as the cristae.
- In the ETS, the higher energy molecules produced in the Citric Acid Cycle are cashed in, producing ATP.
- This is achieved by creating a proton gradient in the intermembrane space.
Step 3 Electron Transport System

- The NADH and FADH$_2$ act like taxi cabs and drop their electrons and protons off at the ETS (they are oxidized back into NAD$^+$ and FAD$^+$).
- The “dropped off” electrons travel along the ETS pumping “dropped off” protons (H$^+$) into the intermembrane space building the proton pressure (gradient).
Step 3 Electron Transport System

- Eventually the electrons are picked up at the end of the ETS by an oxygen atom and join with 2 H^+ to form water.
- Finally the proton pressure in the intermembrane space is relieved as the protons are released through the ATP synthase back into the matrix, converting 36 ADP into 36 ATP.
Step 3 Electron Transport System

- The process of generating ATP in this way is technically referred to as oxidative phosphorylation.
Summary of Cellular Respiration

Glycolysis

Glucose → 2 ATP

Formation of acetyl coenzyme A

Pyruvate → Acetyl coenzyme A

Citric acid cycle

Mitochondrion

Citric acid cycle

Electron transport and chemiosmosis

Energy (in the chemical bonds of ATP)

C₆H₁₂O₆ + 6 O₂ + 6H₂O → 6 CO₂ + 12 H₂O + ATP
Summary of Cellular Respiration

Glycolysis:
- Glucose → 2 Pyruvic acid
 - Cytoplasm
 - 2 ATP

Krebs cycle:
- 2 Acetyl CoA
 - 6 NADH + 2 FADH₂
 - Electron transport chain/ATP synthase action
 - ATP

Maximum ATP per glucose molecule: About 38
Where do the 38 ATP Come From?

<table>
<thead>
<tr>
<th>Process</th>
<th>Number & Type of Energy Rich Molecule</th>
<th>Number of ATP Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>Kreb's Cycle</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td></td>
</tr>
</tbody>
</table>
Photosynthesis and Cellular Respiration

- **Sunlight** enters the ** Chloroplast **, where **Photosynthesis** occurs, producing **CO₂, H₂O**.
- **O₂, Glucose** is released from the **Mitochondrion**, where **Cellular respiration** takes place, converting **CO₂, H₂O** into **ATP + Heat**.
Anaerobic Pathways

- Without oxygen to accept the electrons the ETS backs up as does the Citric Acid Cycle.
- Under these anaerobic conditions (the absence of oxygen) pyruvic acid can be routed by the organism into one of two pathways:
 1) lactic acid fermentation
 2) alcohol fermentation
Lactic acid Fermentation

- Many organisms will also ferment pyruvic acid into other chemicals such as lactic acid.
- Humans ferment lactic acid in muscles where oxygen becomes depleted, resulting in localized anaerobic conditions.
Alcohol Fermentation

- Is the formation of alcohol from sugar.
- Yeast, when under anaerobic conditions, convert glucose to pyruvic acid via the glycolysis pathways, then convert pyruvic acid into ethanol, a C-2 compound.
Aerobic vs Anaerobic

- The ratio of ATP produced anaerobically Vs aerobically is 2:38 or 1:19 (per glucose).
- Anaerobically only the 2 ATP from glycolysis are gained, the two NADH produced in glycolysis require the ETS to be "cashed in" to ATP.
- Instead, the NADH are oxidised (regenerated) to NAD\(^+\) with the energy being used to break down the pyruvate into lactate or ethanol.